Trees of varieties over \mathbb{Z}_p

I. Halupczok

Ecole Normale Superieure rue d'Ulm, Paris

Antalya Algebra days 2008

▶ < Ξ ▶</p>

1 / 16

- **4 ⊡** ► - 4 ≣

Э

I. Halupczok

nac

Trees of varieties over \mathbb{Z}_p

2 Understanding the trees

3 Definition of complexity *d* trees

▲聞▶ ▲臣▶ ▲臣▶

2 / 16

Э

I. Halupczok

DQC

Trees of varieties over \mathbb{Z}_p

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite → each x ∈ X corresponds to infinite path in T(X): x̄ + Zⁿ_p ⊃ x̄ + pZⁿ_p ⊃ x̄ + p²Zⁿ_p ⊃ ... Paths of x̄ and x̄' separate at depth min_i v(x_i - x'_i)

《聞》 《臣》 《臣》

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

▲圖▶ ▲陸▶ ▲陸▶ 三臣

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

- $\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$
- Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

▲圖▶ ▲陸▶ ▲陸▶ 三臣

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

• Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

(《聞》 《문》 《문》 - 문

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

• Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

- 4 回 ト - 4 回 ト - - 三回

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

(《聞》 《문》 《문》 - 문

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

 $X \subset \mathbb{Z}_p^n$ yields a tree $\mathsf{T}(X)$:

• $\lambda \in \mathbb{N} \rightsquigarrow$ consider all balls of "radius" λ intersecting X:

$$X_{\lambda} := \{ B = \bar{a} + p^{\lambda} \mathbb{Z}_p^n \mid B \cap X \neq \emptyset \}$$

•
$$\mathsf{T}(X) := \dot{\bigcup}_{\lambda} X_{\lambda}$$

Inclusion of balls induces tree structure

Examples:

- $X = \mathbb{Z}_p \rightsquigarrow$ Every node of T(X) has p children
- X finite \rightsquigarrow each $x \in X$ corresponds to infinite path in T(X): $\bar{x} + \mathbb{Z}_p^n \supset \bar{x} + p\mathbb{Z}_p^n \supset \bar{x} + p^2\mathbb{Z}_p^n \supset \dots$ Paths of \bar{x} and \bar{x}' separate at depth min_i $v(x_i - x'_i)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

- $X = \{\bar{x} \mid f_1(\bar{x}) = \cdots = f_k(\bar{x}) = 0\}$ affine algebraic set.
- More generally: X definable by first order formula in the valued field language.

Definition (Scowcroft, van den Dries)

X definable, dim X:= dimension of Zariski closure of X in $ilde{\mathbb{Q}}_{p}.$

I. Halupczok

4 / 16

- $X = \{\bar{x} \mid f_1(\bar{x}) = \cdots = f_k(\bar{x}) = 0\}$ affine algebraic set.
- More generally: X definable by first order formula in the valued field language.

Definition (Scowcroft, van den Dries)

X definable, dim X:= dimension of Zariski closure of X in $ilde{\mathbb{Q}}_{p^{1}}$

I. Halupczok

4 / 16

- $X = \{\bar{x} \mid f_1(\bar{x}) = \cdots = f_k(\bar{x}) = 0\}$ affine algebraic set.
- More generally: X definable by first order formula in the valued field language.

Definition (Scowcroft, van den Dries)

X definable, dim X:= dimension of Zariski closure of X in $ilde{\mathbb{Q}}_{p}.$

I. Halupczok

4 / 16

- $X = \{\bar{x} \mid f_1(\bar{x}) = \cdots = f_k(\bar{x}) = 0\}$ affine algebraic set.
- More generally: X definable by first order formula in the valued field language.

Definition (Scowcroft, van den Dries)

X definable, dim X := dimension of Zariski closure of X in $\tilde{\mathbb{Q}}_{p}$.

Conjecture (H.)

X definable, dim $X = d \Rightarrow T(X)$ is of complexity d.

Goal of remainder of talk: make definition of trees of complexity *d* plausible.

The other direction is true:

Theorem (H.

 \mathcal{T} tree of complexity $d \Rightarrow$ there exists a definable X such that $T(X) = \mathcal{T}$

5 / 16

Conjecture (H.)

X definable, dim $X = d \Rightarrow T(X)$ is of complexity d.

Goal of remainder of talk: make definition of trees of complexity *d* plausible.

The other direction is true:

Theorem (H.

 ${\mathcal T}$ tree of complexity $d \Rightarrow$ there exists a definable X such that $\mathsf{T}(X) = {\mathcal T}$

5 / 16

Conjecture (H.)

X definable, dim $X = d \Rightarrow T(X)$ is of complexity d.

Goal of remainder of talk: make definition of trees of complexity d plausible.

The other direction is true:

Theorem (H.

 ${\mathcal T}$ tree of complexity $d \Rightarrow$ there exists a definable X such that $\mathsf{T}(X) = {\mathcal T}$

< ⊕ > < ≧ > < ≧ >
5 / 16 I.

Conjecture (H.)

X definable, dim $X = d \Rightarrow T(X)$ is of complexity d.

Goal of remainder of talk: make definition of trees of complexity d plausible.

The other direction is true:

Theorem (H.)

 ${\mathcal T}$ tree of complexity $d \Rightarrow$ there exists a definable X such that $\mathsf{T}(X) = {\mathcal T}$

(本部) (本語) (本語) (語)

5 / 16

Motivation: poincaré series

• $X \subset \mathbb{Z}_p^n \rightsquigarrow$ Poincaré series of X:

$$P_X(Z) := \sum_{\lambda \ge 0} \# X_\lambda \cdot Z^\lambda \in \mathbb{Z}[[Z]]$$

(Recall: $X_{\lambda} =$ nodes of T(X) at depth λ .)

Theorem (Denef)

X definable $\Rightarrow P_X(Z) \in \mathbb{Q}(Z)$.

It should be possible to see this on the structure of the trees.

I. Halupczok

6 / 16

Motivation: poincaré series

• $X \subset \mathbb{Z}_p^n \rightsquigarrow$ Poincaré series of X:

$$P_X(Z) := \sum_{\lambda \ge 0} \# X_\lambda \cdot Z^\lambda \in \mathbb{Z}[[Z]]$$

(Recall: $X_{\lambda} = \text{nodes of } T(X) \text{ at depth } \lambda$.)

Theorem (Denef)

X definable $\Rightarrow P_X(Z) \in \mathbb{Q}(Z)$.

It should be possible to see this on the structure of the trees.

< □ > < □ > < 豆 > = □

6 / 16 I. Halupczok

• $X \subset \mathbb{Z}_p^n \rightsquigarrow$ Poincaré series of X:

$$P_X(Z) := \sum_{\lambda \ge 0} \# X_\lambda \cdot Z^\lambda \in \mathbb{Z}[[Z]]$$

(Recall: $X_{\lambda} =$ nodes of T(X) at depth λ .)

Theorem (Denef)

X definable $\Rightarrow P_X(Z) \in \mathbb{Q}(Z)$.

• It should be possible to see this on the structure of the trees.

- 세례 에 제 문 에 문 에 문 에 문

6 / 16 I. Halupczok

• $X \subset \mathbb{Z}_p^n \rightsquigarrow$ Poincaré series of X:

$$P_X(Z) := \sum_{\lambda \ge 0} \# X_\lambda \cdot Z^\lambda \in \mathbb{Z}[[Z]]$$

(Recall: $X_{\lambda} =$ nodes of T(X) at depth λ .)

Theorem (Denef)

X definable $\Rightarrow P_X(Z) \in \mathbb{Q}(Z)$.

• It should be possible to see this on the structure of the trees.

<ロ> <部> <部> <き> <き> <き> <き</p>

6 / 16 I. Halupczok

Lemma

 $X, X' \subset \mathbb{Z}_p^n$ p-adically closed. Then:

{bijective isometries $X \to X'$ } $\stackrel{1:1}{\leftrightarrow}$ {isomorphisms $T(X) \to T(X')$ }

- So: trees help understanding sets up to isometry
- helpful for motivic integration in the Hrushovski-Kazhdan way

7 / 16

Lemma

 $X, X' \subset \mathbb{Z}_p^n$ p-adically closed. Then:

{bijective isometries $X \to X'$ } $\stackrel{1:1}{\leftrightarrow}$ {isomorphisms $T(X) \to T(X')$ }

- So: trees help understanding sets up to isometry
- helpful for motivic integration in the Hrushovski-Kazhdan way

Lemma

 $X, X' \subset \mathbb{Z}_p^n$ p-adically closed. Then:

{bijective isometries $X \to X'$ } $\stackrel{1:1}{\leftrightarrow}$ {isomorphisms $T(X) \to T(X')$ }

- So: trees help understanding sets up to isometry
- helpful for motivic integration in the Hrushovski-Kazhdan way

- 세례에 세명에 세명에 드림

1 Goal

2 Understanding the trees

3 Definition of complexity *d* trees

<ロト <回ト < 回ト < 回ト

Э

I. Halupczok

8 / 16

990

Trees of varieties over \mathbb{Z}_p

Crucial ingredient is (a generalization of):

Lemma (Key lemma)

Suppose
$$\phi: \mathbb{Z}_p \to \mathbb{Z}_p$$
 satisfies $v(\phi(x') - \phi(x)) \ge v(x' - x)$.
Then $T(graph(\phi)) \cong T(graph(x \mapsto 0)) \cong T(\mathbb{Z}_p)$

▲□ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

990

- For each (x₀, y₀) ∈ X: implicit function theorem yields ball (x₀, y₀) + p^λZ²_ρ on which X is the graph of a function φ
- If $v(\phi'(x_0)) < 0$ then exchange coordinates $\rightsquigarrow v(\phi'(x_0)) \geq 0$
- $\phi'(x_0) \approx \frac{\phi(x) \phi(x_0)}{x x_0}$
- On smaller ball: $v(\phi(x) \phi(x')) \ge v(x x')$
- Key lemma $\Rightarrow T(X)$ on $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ is isomorphic to $T(\mathbb{Z}_p)$.

10 / 16

- For each (x₀, y₀) ∈ X: implicit function theorem yields ball (x₀, y₀) + p^λZ²_p on which X is the graph of a function φ
- If $v(\phi'(x_0)) < 0$ then exchange coordinates $\rightsquigarrow v(\phi'(x_0)) \geq 0$
- $\phi'(x_0) \approx \frac{\phi(x) \phi(x_0)}{x x_0}$
- On smaller ball: $v(\phi(x) \phi(x')) \ge v(x x')$
- Key lemma $\Rightarrow T(X)$ on $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ is isomorphic to $T(\mathbb{Z}_p)$.

10 / 16

- For each $(x_0, y_0) \in X$: implicit function theorem yields ball $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ on which X is the graph of a function ϕ
- If $v(\phi'(x_0)) < 0$ then exchange coordinates $\rightsquigarrow v(\phi'(x_0)) \geq 0$
- $\phi'(x_0) \approx \frac{\phi(x) \phi(x_0)}{x x_0}$
- On smaller ball: $v(\phi(x) \phi(x')) \ge v(x x')$
- Key lemma $\Rightarrow T(X)$ on $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ is isomorphic to $T(\mathbb{Z}_p)$.

10 / 16

- For each (x₀, y₀) ∈ X: implicit function theorem yields ball (x₀, y₀) + p^λZ²_p on which X is the graph of a function φ
- If $v(\phi'(x_0)) < 0$ then exchange coordinates $\rightsquigarrow v(\phi'(x_0)) \geq 0$
- $\phi'(x_0) \approx \frac{\phi(x) \phi(x_0)}{x x_0}$
- On smaller ball: $v(\phi(x) \phi(x')) \ge v(x x')$
- Key lemma $\Rightarrow T(X)$ on $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ is isomorphic to $T(\mathbb{Z}_p)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

10 / 16

- For each $(x_0, y_0) \in X$: implicit function theorem yields ball $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ on which X is the graph of a function ϕ
- If $v(\phi'(x_0)) < 0$ then exchange coordinates $\rightsquigarrow v(\phi'(x_0)) \geq 0$
- $\phi'(x_0) \approx \frac{\phi(x) \phi(x_0)}{x x_0}$
- On smaller ball: $v(\phi(x) \phi(x')) \ge v(x x')$
- Key lemma $\Rightarrow T(X)$ on $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ is isomorphic to $T(\mathbb{Z}_p)$.

- 4 同 ト 4 日 ト - 日

10 / 16

- For each $(x_0, y_0) \in X$: implicit function theorem yields ball $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ on which X is the graph of a function ϕ
- If $v(\phi'(x_0)) < 0$ then exchange coordinates $\rightsquigarrow v(\phi'(x_0)) \geq 0$
- $\phi'(x_0) \approx \frac{\phi(x) \phi(x_0)}{x x_0}$
- On smaller ball: $v(\phi(x) \phi(x')) \ge v(x x')$
- Key lemma $\Rightarrow T(X)$ on $(x_0, y_0) + p^{\lambda} \mathbb{Z}_p^2$ is isomorphic to $T(\mathbb{Z}_p)$.

→ ∃ → ∃

回 と く ヨ と く ヨ と …

11 / 16

I. Halupczok

- We may suppose that the B_i are disjoint.
- Total tree of X is:
 - finite tree with leafs B_i
 - a copy of $T(\mathbb{Z}_p)$ attached to each leaf.

11 / 16

I. Halupczok

- We may suppose that the B_i are disjoint.
- Total tree of X is:
 - finite tree with leafs B_i
 - a copy of $T(\mathbb{Z}_p)$ attached to each leaf.

11 / 16

I. Halupczok

- We may suppose that the B_i are disjoint.
- Total tree of X is:
 - finite tree with leafs B_i
 - a copy of $T(\mathbb{Z}_p)$ attached to each leaf.

11 / 16

I. Halupczok

- We may suppose that the B_i are disjoint.
- Total tree of X is:
 - finite tree with leafs B_i
 - a copy of $T(\mathbb{Z}_p)$ attached to each leaf.

< □ > < □ > < 豆 > = □

11 / 16

I. Halupczok

- We may suppose that the B_i are disjoint.
- Total tree of X is:
 - finite tree with leafs B_i
 - a copy of $T(\mathbb{Z}_p)$ attached to each leaf.

(4月) (日) (日) 日

11 / 16

I. Halupczok

- We may suppose that the B_i are disjoint.
- Total tree of X is:
 - finite tree with leafs B_i
 - a copy of $T(\mathbb{Z}_p)$ attached to each leaf.

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

- *T*(*X*) contains {*p*^λℤ²_p | λ ≥ 0}. What are the side branches?
- $x^3 = y^2$ (and suppose $\lambda := v(x) > 0$) \Rightarrow

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

- $y = \pm x \sqrt{x}$, i.e. x is square $\iff 2|\lambda$ and ac(x) is quare in I
- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is $T(\mathbb{Z}_p) \times \{$ Two paths separating at depth

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

- T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?
- $x^3 = y^2$ (and suppose $\lambda := v(x) > 0$) \Rightarrow

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

- $y = \pm x \sqrt{x}$, i.e. x is square $\iff 2|\lambda$ and ac(x) is quare in \mathbb{I}
- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is $T(\mathbb{Z}_p) \times \{$ Two paths separating at depth

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side
 branches at odd depths
 → ¹/₂ → ¹/₂ → ²/₂ → ²/

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

- T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?
- $x^3 = y^2$ (and suppose $\lambda := v(x) > 0$) \Rightarrow
 - $v(y) = \frac{3}{2}v(x) > \lambda$
 - $y = \pm x \sqrt{x}$, i.e. x is square $\iff 2|\lambda$ and $\operatorname{ac}(x)$ is quare in \mathbb{I}
- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is $T(\mathbb{Z}_p) \times \{$ Two paths separating at depth

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

12 / 16

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

- T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?
- $x^3 = y^2$ (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

• $y = \pm x \sqrt{x}$, i.e. x is square

 \implies 2 $|\lambda$ and ac(x) is quare in \mathbb{F}_{μ}

- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is T(\mathbb{Z}_n) × {Two paths separating at definition of the separation of the separ

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

- T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?
- $x^3 = y^2$ (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2} v(x) > \lambda$$

• $y = \pm x \sqrt{x}$, i.e. x is square

 $\iff 2|\lambda$ and $\operatorname{ac}(x)$ is quare in \mathbb{F}_p

- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is T(\mathbb{Z}_n) × {Two paths separating at definition of the separation of the separ

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

- T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?
- $x^3 = y^2$ (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

- $y = \pm x \sqrt{x}$, i.e. x is square
 - $\iff 2|\lambda \text{ and } \operatorname{ac}(x) \text{ is quare in } \mathbb{F}_{\rho}$
- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is

 $\mathsf{T}(\mathbb{Z}_p) \times \{\mathsf{Two paths separating at depth } \frac{1}{2}\lambda - 1\}$

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side
 branches at odd depths
 → ¹/₂ → ¹/₂ → ²/₂ → ²/

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0$) \Rightarrow

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

•
$$y = \pm x \sqrt{x}$$
, i.e. x is square
 $\iff 2|\lambda$ and $ac(x)$ is quare in \mathbb{F}_p

•
$$(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$$
 with $x_0 \in \mathbb{Z}_p^{\times}$
 B is child of $p^{\lambda}\mathbb{Z}_p^2$.

- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is

 $\mathsf{T}(\mathbb{Z}_p) imes \{\mathsf{Two paths separating at depth } rac{1}{2}\lambda - 1\}$

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

12 / 16

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B$ = union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is

 $\mathsf{T}(\mathbb{Z}_p) imes \{\mathsf{Two paths separating at depth } \frac{1}{2}\lambda - 1\}$

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

• $y = \pm x\sqrt{x}$, i.e. x is square

 $\iff 2|\lambda \text{ and } \operatorname{ac}(x) \text{ is quare in } \mathbb{F}_p$

- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x\sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is T(\mathbb{Z}_n) × {Two paths separating at definition of the separation of the separ

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

12 / 16

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$$
 with $x_0 \in \mathbb{Z}_p^{\times}$
 B is child of $p^{\lambda}\mathbb{Z}_p^2$.

- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x \sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is $T(\mathbb{Z}_p) \times \{$ Two paths separating at depth $\frac{1}{2}\lambda$

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

• $y = \pm x\sqrt{x}$, i.e. x is square
 $\iff 2|\lambda$ and $ac(x)$ is quare in \mathbb{F}_p

•
$$(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$$
 with $x_0 \in \mathbb{Z}_p^{\times}$
 B is child of $p^{\lambda}\mathbb{Z}_p^2$.

- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x \sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is

 $\Gamma(\mathbb{Z}_p) \times \{ \mathsf{Two paths separating at depth } \frac{1}{2}\lambda - 1 \}$

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

• $y = \pm x\sqrt{x}$, i.e. x is square
 $\iff 2|\lambda$ and $ac(x)$ is quare in \mathbb{F}_p

•
$$(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$$
 with $x_0 \in \mathbb{Z}_p^{\times}$
 B is child of $p^{\lambda}\mathbb{Z}_p^2$.

- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x \sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on *B* is

 $\Gamma(\mathbb{Z}_p) imes \{ \mathsf{Two paths separating at depth } \frac{1}{2}\lambda - 1 \}$

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

• $y = \pm x\sqrt{x}$, i.e. x is square
 $\iff 2|\lambda$ and $ac(x)$ is quare in \mathbb{F}_p

- $(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$ with $x_0 \in \mathbb{Z}_p^{\times}$ B is child of $p^{\lambda}\mathbb{Z}_p^2$.
- The tree on *B*:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x \sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on B is T(\mathbb{Z}_p) \times {Two paths separating at depth $\frac{1}{2}\lambda - 1$ }

 → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

Example: $X = \{(x, y) \in \mathbb{Z}_p^2 \mid x^3 = y^2\}$, $p \neq 2$

• T(X) contains $\{p^{\lambda}\mathbb{Z}_{p}^{2} \mid \lambda \geq 0\}$. What are the side branches?

•
$$x^3 = y^2$$
 (and suppose $\lambda := v(x) > 0) \Rightarrow$

•
$$v(y) = \frac{3}{2}v(x) > \lambda$$

• $y = \pm x\sqrt{x}$, i.e. x is square
 $\iff 2|\lambda$ and $ac(x)$ is quare in \mathbb{F}_p

•
$$(x, y) \in B := (p^{\lambda}x_0, 0) + p^{\lambda+1}\mathbb{Z}_p^2$$
 with $x_0 \in \mathbb{Z}_p^{\times}$
 B is child of $p^{\lambda}\mathbb{Z}_p^2$.

- The tree on B:
 - $X \cap B =$ union of the two graphs $x \mapsto \pm x \sqrt{x}$
 - Distance between graphs is $\frac{3}{2}\lambda$
 - Satisfy (generalization of) key lemma
 - \Rightarrow Tree on B is T(\mathbb{Z}_{ρ}) \times {Two paths separating at depth $\frac{1}{2}\lambda - 1$ }
- → Total tree: ^{p-1}/₂ such side branches at even depths, no side branches at odd depths

1 Goal

2 Understanding the trees

3 Definition of complexity *d* trees

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

13 / 16

Э

I. Halupczok

990

Trees of complexity 0:

- dim $X = 0 \iff X$ finite
 - \rightsquigarrow trees of complexity 0 := tree with finitely many bifurcations

▲聞▶ ▲屋▶ ▲屋▶

Trees of complexity 0:

dim X = 0 ↔ X finite
 → trees of complexity 0 := tree with finitely many bifurcation

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ……

Trees of complexity 0:

• dim $X = 0 \iff X$ finite

 \rightsquigarrow trees of complexity 0 := tree with finitely many bifurcations

Trees of complexity 0:

• dim $X = 0 \iff X$ finite

 \rightsquigarrow trees of complexity 0 := tree with finitely many bifurcations

(4月) (日) (日) 日

- Tree T₀ with finitely many bifurcations (corresponding to singularities of X)
 [Cusp: only one path to 0]
- + additional side branches at each node v [Cusp: p-1/2 side branches if 2| depth(v)]
- Side branches are of the form T(Z_p) × T_v where T_v is of complexity 0 [Cusp: T_v two paths separating at depth ¹/₂ depth(v) − 1]
- \$\mathcal{T}_v\$ is uniform in depth(v): lengths of segments are linear in depth(v)

15 / 16

- Tree T₀ with finitely many bifurcations (corresponding to singularities of X)
 [Cusp: only one path to 0]
- + additional side branches at each node v [Cusp: ^{p-1}/₂ side branches if 2| depth(v)]
- Side branches are of the form T(Z_p) × T_v where T_v is of complexity 0 [Cusp: T_v two paths separating at depth ¹/₂ depth(v) − 1]
- \$\mathcal{T}_v\$ is uniform in depth(v): lengths of segments are linear in depth(v)

15 / 16

- Tree T₀ with finitely many bifurcations (corresponding to singularities of X)
 [Cusp: only one path to 0]
- + additional side branches at each node v [Cusp: p-1/2 side branches if 2| depth(v)]
- Side branches are of the form T(Z_p) × T_v where T_v is of complexity 0 [Cusp: T_v two paths separating at depth ¹/₂ depth(v) − 1]
- \$\mathcal{T}_v\$ is uniform in depth(v): lengths of segments are linear in depth(v)

15 / 16

- Tree T₀ with finitely many bifurcations (corresponding to singularities of X)
 [Cusp: only one path to 0]
- + additional side branches at each node v [Cusp: p-1/2 side branches if 2| depth(v)]
- Side branches are of the form T(Z_p) × T_v where T_v is of complexity 0 [Cusp: T_v two paths separating at depth ¹/₂ depth(v) − 1]
- \$\mathcal{T}_v\$ is uniform in depth(v): lengths of segments are linear in depth(v)

- Tree T₀ with finitely many bifurcations (corresponding to singularities of X)
 [Cusp: only one path to 0]
- + additional side branches at each node v [Cusp: p-1/2 side branches if 2| depth(v)]
- Side branches are of the form $T(\mathbb{Z}_p) \times \mathcal{T}_v$ where \mathcal{T}_v is of complexity 0 [Cusp: \mathcal{T}_v two paths separating at depth $\frac{1}{2} \operatorname{depth}(v) - 1$]
- \$\mathcal{T}_v\$ is uniform in depth(v): lengths of segments are linear in depth(v)

イロト イポト イヨト イヨト 二日

• General definition:

- Define uniform families of trees of complexity d
- Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

• General definition:

• Define uniform families of trees of complexity d

• Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

• General definition:

- Define uniform families of trees of complexity d
- Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

• General definition:

- Define uniform families of trees of complexity d
- Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

• General definition:

- Define uniform families of trees of complexity d
- Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

• General definition:

- Define uniform families of trees of complexity d
- Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

- General definition:
 - Define uniform families of trees of complexity d
 - Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

Idea of proof:

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

・ 同 ト ・ ヨ ト ・ ヨ ト

- General definition:
 - Define uniform families of trees of complexity d
 - Trees of complexity *d* + 1 are with finitely many bifurcations + uniform side branches of complexity *d*

Theorem (H.)

For any definable $X \subset \mathbb{Z}_p^2$, T(X) is of complexity dim X.

• (Trees of definable set are not really more complicated than trees of varieties.)

Idea of proof:

- For varities: similar to cusp (use theorem of Puiseux)
- For definable sets: additionally use cell decomposition

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶