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Trees of sets in Zn
p

X ⊂ Zn
p yields a tree T(X ):

• λ ∈ N  consider all balls of “radius” λ intersecting X :

Xλ := {B = ā + pλZn
p | B ∩ X 6= ∅}

• T(X ) :=
⋃̇

λXλ

• Inclusion of balls induces tree structure

Examples:

• X = Zp  Every node of T(X ) has p children

• X finite  each x ∈ X corresponds to infinite path in T(X ):
x̄ + Zn

p ⊃ x̄ + pZn
p ⊃ x̄ + p2Zn

p ⊃ . . .
Paths of x̄ and x̄ ′ separate at depth mini v(xi − x ′i )
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Goal (1)

Goal: describe which trees T(X ) one can get if X is. . . :

• X = {x̄ | f1(x̄) = · · · = fk(x̄) = 0} affine algebraic set.

• More generally: X definable by first order formula in the
valued field language.

Definition (Scowcroft, van den Dries)

X definable, dim X := dimension of Zariski closure of X in Q̃p.
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Goal (2)

We will define trees of complexity d .

Conjecture (H.)

X definable, dim X = d ⇒ T(X ) is of complexity d.

Goal of remainder of talk: make definition of trees of complexity d
plausible.
The other direction is true:

Theorem (H.)

T tree of complexity d ⇒ there exists a definable X such that
T(X ) = T
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Motivation: poincaré series

• X ⊂ Zn
p  Poincaré series of X :

PX (Z ) :=
∑
λ≥0

#Xλ · Zλ ∈ Z[[Z ]]

(Recall: Xλ = nodes of T(X ) at depth λ.)

Theorem (Denef)

X definable ⇒ PX (Z ) ∈ Q(Z ).

• It should be possible to see this on the structure of the trees.

• Indeed, complexity d trees have rational Poincaré series.
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Motivation: isometry

Lemma

X ,X ′ ⊂ Zn
p p-adically closed. Then:

{bijective isometries X → X ′} 1:1↔ {isomorphisms T (X ) → T (X ′)}

• So: trees help understanding sets up to isometry

• helpful for motivic integration in the Hrushovski-Kazhdan way
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Key lemma

Crucial ingredient is (a generalization of):

Lemma (Key lemma)

Suppose φ : Zp → Zp satisfies v(φ(x ′)− φ(x)) ≥ v(x ′ − x).
Then T(graph(φ)) ∼= T(graph(x 7→ 0)) ∼= T(Zp)
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Smooth plane curves (1)

Suppose X is smooth plane curve.

• For each (x0, y0) ∈ X : implicit function theorem yields ball
(x0, y0) + pλZ2

p on which X is the graph of a function φ

• If v(φ′(x0)) < 0 then exchange coordinates  v(φ′(x0)) ≥ 0

• φ′(x0) ≈ φ(x)−φ(x0)
x−x0

• On smaller ball: v(φ(x)− φ(x ′)) ≥ v(x − x ′)

• Key lemma ⇒ T(X ) on (x0, y0) + pλZ2
p is isomorphic to

T(Zp).
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Smooth plane curves (2)

• Z2
p compact, X closed in Z2

p ⇒ X is covered by finitely many
balls Bi on which the tree is T(Zp).

• We may suppose that the Bi are disjoint.

• Total tree of X is:
• finite tree with leafs Bi

• a copy of T(Zp) attached to each leaf.

Arbitrary smooth algebraic sets work similarly.
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X is cusp curve

Example: X = {(x , y) ∈ Z2
p | x3 = y2}, p 6= 2

• T (X ) contains {pλZ2
p | λ ≥ 0}. What are the side branches?

• x3 = y2 (and suppose λ := v(x) > 0) ⇒
• v(y) = 3

2v(x) > λ
• y = ±x

√
x , i.e. x is square

⇐⇒ 2|λ and ac(x) is quare in Fp

• (x , y) ∈ B := (pλx0, 0) + pλ+1Z2
p with x0 ∈ Z×p

B is child of pλZ2
p.

• The tree on B:
• X ∩ B = union of the two graphs x 7→ ±x

√
x

• Distance between graphs is 3
2λ

• Satisfy (generalization of) key lemma
• ⇒ Tree on B is

T(Zp)× {Two paths separating at depth 1
2λ− 1}

•  Total tree: p−1
2 such side branches at even depths, no side

branches at odd depths
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Generalizing the idea: trees of complexity 0

Examples  definition of trees of complexity d

Trees of complexity 0:

• dim X = 0 ⇐⇒ X finite
 trees of complexity 0 := tree with finitely many bifurcations
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Generalizing the idea: trees of complexity d > 0

Cusp  Tree of complexity 1 :=

• Tree T0 with finitely many bifurcations (corresponding to
singularities of X )
[Cusp: only one path to 0]

• + additional side branches at each node v
[Cusp: p−1

2 side branches if 2| depth(v)]

• Side branches are of the form T(Zp)× Tv

where Tv is of complexity 0
[Cusp: Tv two paths separating at depth 1

2 depth(v)− 1]

• Tv is uniform in depth(v): lengths of segments are linear in
depth(v)
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Definition of trees of complexity d

• General definition:
• Define uniform families of trees of complexity d
• Trees of complexity d + 1 are with finitely many bifurcations +

uniform side branches of complexity d

Theorem (H.)

For any definable X ⊂ Z2
p, T(X ) is of complexity dim X.

• (Trees of definable set are not really more complicated than
trees of varieties.)

Idea of proof:

• For varities: similar to cusp (use theorem of Puiseux)

• For definable sets: additionally use cell decomposition
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