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@ Goal
@® Understanding the trees

© Definition of complexity d trees
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X C Zy yields a tree T(X):

e )\ € N ~~ consider all balls of “radius” X intersecting X:

Xy:={B=3+p Z)| BNX # 0}

T(X) := Uy X

e Inclusion of balls induces tree structure
Examples:

e X =7, ~ Every node of T(X) has p children

e X finite ~» each x € X corresponds to infinite path in T(X):
X+ 2L} DX+ ply DX+ p*Lh D

Paths of X and X" separate at depth min; v(x; — x/)
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e )\ € N ~> consider all balls of “radius” A intersecting X:

X\:={B=3a+p'Z]| BNX # 0}
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X C Zy yields a tree T(X):
e )\ € N ~> consider all balls of “radius” A intersecting X:
X\:={B=3a+p'Z]| BNX # 0}
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e Inclusion of balls induces tree structure
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X C Zy yields a tree T(X):
e )\ € N ~> consider all balls of “radius” A intersecting X:

X\:={B=3a+p'Z]| BNX # 0}
o T(X) :=UyX

e Inclusion of balls induces tree structure
Examples:

e X = Zp ~ Every node of T(X) has p children

e X finite ~» each x € X corresponds to infinite path in T(X):
X+Zy DX+ pLhDx+pPLhD ...



Trees of sets in ZZ

X C Zj yields a tree T(X):

e )\ € N ~> consider all balls of “radius” A intersecting X:

X\:={B=3+p'Z) | BNX # 0}

o T(X):= U/\X/\

e Inclusion of balls induces tree structure
Examples:

e X =7, ~ Every node of T(X) has p children

e X finite ~ each x € X corresponds to infinite path in T(X):
X+Zh DX+ pLpy DX+ p*LhD ...
Paths of X and X’ separate at depth min; v(x; — x/)
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Goal: describe which trees T(X) one can get if X is...:
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Goal: describe which trees T(X) one can get if X is...:

o X ={x]f(x)="-- = fx(x) = 0} affine algebraic set.

it
-

«0O0)>» «F»r «Z» « Q>



Goal: describe which trees T(X) one can get if X is...:

o X ={x]f(x)="-- = fx(x) = 0} affine algebraic set.
e More generally: X definable by first order formula in the
valued field language.
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Goal: describe which trees T(X) one can get if X is...:

o X ={x]f(x)="-- = fx(x) = 0} affine algebraic set.
e More generally: X definable by first order formula in the
valued field language.

X definable, dim X := dimension of Zariski closure of X in @p.
O (@ (Er o« DA
© Trees of varietiesover Z, . 4/16 | Halupczok
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We will define trees of complexity d.

X definable, dim X = d = T(X) is of complexity d.
Goal of remainder of talk: make definition of trees of complexity d

plausible.
The other direction is true:

T tree of complexity d = there exists a definable X such that
T(X)=T
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We will define trees of complexity d.

X definable, dim X = d = T(X) is of complexity d.
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We will define trees of complexity d.

X definable, dim X = d = T(X) is of complexity d.

Goal of remainder of talk: make definition of trees of complexity d
plausible.
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We will define trees of complexity d.

X definable, dim X = d = T(X) is of complexity d.

Goal of remainder of talk: make definition of trees of complexity d
plausible.

The other direction is true:

T tree of complexity d = there exists a definable X such that
TX)=T
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e X C Z;’, ~~ Poincaré series of X:

Px(Z) =" #X\- 2" € Z[[Z]]

A>0

(Recall: Xy = nodes of T(X) at depth \.)
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e X C Z;’, ~~ Poincaré series of X:

Px(Z) =" #X\- 2" € Z[[Z]]

A>0

(Recall: Xy = nodes of T(X) at depth \.)

X definable = Px(Z) € Q(2).
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e X C Z;’, ~~ Poincaré series of X:

Px(Z) =" #X\- 2" € Z[[Z]]

A>0

(Recall: Xy = nodes of T(X) at depth \.)

X definable = Px(Z) € Q(2).

e |t should be possible to see this on the structure of the trees.
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e X C Z" ~~ Poincaré series of X

Px(Z):=> #X\- 2" € Z]|Z]]

A>0

(Recall: Xy = nodes of T(X) at depth \.)

X definable = Px(Z) € Q(2).

e It should be possible to see this on the structure of the trees
o Indeed, complexity d trees have rational Poincaré series

, .
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X, X' C Zy p-adically closed. Then:

{bijective isometries X — X'} £} {isomorphisms T(X) — T(X')}
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X, X' C Zy p-adically closed. Then:

{bijective isometries X — X'} £3 {isomorphisms T(X) — T(X')}

e So: trees help understanding sets up to isometry
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«0O>» «F»r « = < > Q>

X, X' C Zy p-adically closed. Then:

{bijective isometries X — X'} £} {isomorphisms T(X) — T(X')}

e So: trees help understanding sets up to isometry

e helpful for motivic integration in the Hrushovski-Kazhdan way



O Goal

@ Understanding the trees

© Definition of complexity d trees
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Crucial ingredient is (a generalization of):

Suppose ¢: Zp, — L, satisfies v(¢(x') — ¢(x)) > v(x' — x).
Then T(graph(¢)) = T(graph(x — 0)) = T(Zp)

«O>» «Fr «Z)> « =) = 9HAr
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Suppose X is smooth plane curve.
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Suppose X is smooth plane curve.

e For each (xp, y0) € X: implicit function theorem yields ball
(x0, ¥0) + p*Z2 on which X is the graph of a function ¢
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Suppose X is smooth plane curve.

e For each (xp, y0) € X: implicit function theorem yields ball
(x0, ¥0) + p*Z2 on which X is the graph of a function ¢

o If v(¢'(x0)) < 0 then exchange coordinates ~ v(¢'(xp)) > 0
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Suppose X is smooth plane curve.

e For each (xp, y0) € X: implicit function theorem yields ball
(x0, ¥0) + p*Z2 on which X is the graph of a function ¢

X—X0

o If v(¢'(x0)) < 0 then exchange coordinates ~ v(¢'(xp)) > 0
o ¢'(x0) ~ P(x)—d(x0)
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Suppose X is smooth plane curve.

e For each (xp, y0) € X: implicit function theorem yields ball
(x0, ¥0) + p*Z2 on which X is the graph of a function ¢

X—X0

o If v(¢'(x0)) < 0 then exchange coordinates ~ v(¢'(xp)) > 0
o ¢'(x0) ~ P(x)—d(x0)

e On smaller ball: v(¢(x) — ¢(x")) > v(x — x)
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Smooth plane curves (1)

Suppose X is smooth plane curve.

e For each (xp, o) € X: implicit function theorem yields ball
(x0,¥0) + p/\Zl% on which X is the graph of a function ¢

o If v(¢'(x0)) < 0 then exchange coordinates ~ v(¢'(xp)) > 0

o ¥(x)~ P(x)—d(x0)

X—Xo
e On smaller ball: v(¢(x) — ¢(x")) > v(x — x)
e Key lemma = T(X) on (xo, y0) + p*Z3 is isomorphic to
T(Zp).

Trees of varieties over Zj, 10 / 16 I. Halupczok



o Z,z, compact, X closed in Zf, = X is covered by finitely many
balls B; on which the tree is T(Z,).
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o Z,z, compact, X closed in Zf, = X is covered by finitely many
balls B; on which the tree is T(Z,).

e We may suppose that the B; are disjoint.
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o Z,z, compact, X closed in Zf, = X is covered by finitely many
balls B; on which the tree is T(Z,).

e We may suppose that the B; are disjoint.
e Total tree of X is:
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o Z,z, compact, X closed in Zf, = X is covered by finitely many
balls B; on which the tree is T(Z,).

e We may suppose that the B; are disjoint.
e Total tree of X is:

e finite tree with leafs B;
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o Z,z, compact, X closed in Z,z, = X is covered by finitely many
balls B; on which the tree is T(Z,).

e We may suppose that the B; are disjoint.
e Total tree of X is:

e finite tree with leafs B;
e a copy of T(Z,) attached to each leaf.
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o Z,z, compact, X closed in Z,z, = X is covered by finitely many
balls B; on which the tree is T(Z,).

e We may suppose that the B; are disjoint.
e Total tree of X is:

e finite tree with leafs B;
e a copy of T(Z,) attached to each leaf.

Arbitrary smooth algebraic sets work similarly.
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Example: X = {(x,y) € Z,z, |x3=y%}, p#£2
e T(X) contains {p\ﬂ% | A > 0}. What are the side branches?
e x3 = y? (and suppose ) := v(x) > 0) =
e v(y)=3v(x)> A
e y = +xy/X, i.e. x is square
<= 2|\ and ac(x) is quare in F,
(x,y) € B := (p*x0,0) + p*1Z2 with xo € Z
B is child of p*Z3.
The tree on B:
e X N B = union of the two graphs x — 4xy/x
e Distance between graphs is %)\

e Satisfy (generalization of ) key lemma
e = Treeon B is

T(Zp) x {Two paths separating at depth %/\ -1}

~~ Total tree: % such side branches at even depths, no side
branches at odd depths
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Example: X = {(x,y) € Z,% |x3=y%}, p#£2

e T(X) contains {p)‘Z% | A > 0}. What are the side branches?
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Example: X = {(x,y) € Z,% |x3=y%}, p#£2
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Example: X = {(x,y) € Z,% |x3=y%}, p#£2
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Example: X = {(x,y) € Z,% |x3=y%}, p#£2

e T(X) contains {p)‘Z% | A > 0}. What are the side branches?
e x3 = y? (and suppose A := v(x) > 0) =
o v(y)=3v(x)> A
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Example: X = {(x,y) € Z,% |x3=y%}, p#£2

e T(X) contains {p)‘Z% | A > 0}. What are the side branches?
e x3 = y? (and suppose A := v(x) > 0) =
o V()= 3v(x) > A

e y = +xy/x, i.e. x is square

<= 2|\ and ac(x) is quare in F,

e (x,y) € B:=(p*x0,0) + p>‘+1Zf, with xp € Z
B is child of pAZ%.
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Example: X = {(x,y) € Z,z, |x3=y%}, p#£2

e T(X) contains {p)‘Z% | A > 0}. What are the side branches?
e x3 = y? (and suppose A := v(x) > 0) =
o v(y)=3v(x)> A
e y = +xy/x, i.e. x is square
<= 2|\ and ac(x) is quare in F,
e (x,y) € B:=(p*x0,0) + p>‘+1Z§ with xo € Z

B is child of pAZ%.

e The tree on B:
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Example: X = {(x,y) € Z,z, |x3=y%}, p#£2

e T(X) contains {p)‘Z% | A > 0}. What are the side branches?
x3 = y? (and suppose \ := v(x) > 0) =
o v(y)=3v(x)> A
e y = +xy/x, i.e. x is square
<= 2|\ and ac(x) is quare in F,
e (x,y) € B:=(p*x0,0) + p>‘+1Z§ with xo € Z
B is child of pAZ%.

e The tree on B:

e X N B = union of the two graphs x — £xy/x
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X is cusp curve

Example: X = {(x,y) € Z,% | x3=y2}, p#2
e T(X) contains {p*Z2 | A > 0}. What are the side branches?
e x3 = y? (and suppose A := v(x) > 0) =
o v(y)=3v(x)> A
o y = +xy/x, i.e. x is square
<= 2|\ and ac(x) is quare in IF,,
e (x,y) € B:=(p*x0,0) + p’\HZfJ with xo € Z,
B is child of p/\Z%.
e The tree on B:

e X N B = union of the two graphs x — +x4/x
e Distance between graphs is %A
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X is cusp curve

Example: X = {(x,y) € Z,% | x3=y2}, p#2
e T(X) contains {p*Z2 | A > 0}. What are the side branches?
e x3 = y? (and suppose A := v(x) > 0) =
o v(y)=3v(x)> A
o y = +xy/x, i.e. x is square
<= 2|\ and ac(x) is quare in IF,,
e (x,y) € B:=(p*x0,0) + p’\HZfJ with xo € Z,
B is child of p/\Z%.
e The tree on B:

e X N B = union of the two graphs x — +x4/x
e Distance between graphs is %A
e Satisfy (generalization of) key lemma
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X is cusp curve

Example: X = {(x,y) € Z2 | x* = y?} p #2
T(X) contains {p*Z2 | A > 0}. What are the side branches?

o x3 =2 (and suppose A := v(x) > 0) =

o v(y)=3v(x) > A

° y= ix X, i.e. x is square

<= 2|\ and ac(x) is quare in IF,,
 (pA A1m72 s X

(x,y) € B:=(p*x0,0) + p*"Z5 with xo € Z;
B is child of p/\Z%.
The tree on B:
X N B = union of the two graphs x — +x4/x
Distance between graphs is %A
Satisfy (generalization of) key lemma
= Tree on B is
T(Zp) x {Two paths separating at depth 3\ — 1}
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X is cusp curve

Example: X = {(x,y) € Z2 | x* = y?} p #2
T(X) contains {p*Z2 | A > 0}. What are the side branches?

o x3=y? (and suppose A := v(x) > 0) =
o v(y)=3v(x) > A

° y= ix X, i.e. x is square
<= 2|\ and ac(x) is quare in IF,,

(x,y) € B:=(p*x0,0) 4+ p*17Z2 with xo € Z
B is child of p/\Z%.
The tree on B:
X N B = union of the two graphs x — +x4/x
Distance between graphs is %A
Satisfy (generalization of) key lemma
= Tree on Bis
T(Zp) x {Two paths separating at depth 3\ — 1}

~ Total tree: pT_l such side branches at even depths, no side

branches at odd depths
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Examples ~~ definition of trees of complexity d
Trees of complexity 0:
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Examples ~~ definition of trees of complexity d
Trees of complexity 0:

e dimX =0 <= X finite
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Examples ~~ definition of trees of complexity d
Trees of complexity 0:

e dimX =0 <= X finite

~ trees of complexity 0 := tree with finitely many bifurcations
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Cusp ~~ Tree of complexity 1 :=
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Cusp ~~ Tree of complexity 1 :=

e Tree 7y with finitely many bifurcations (corresponding to
singularities of X)

[Cusp: only one path to 0]
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Cusp ~ Tree of complexity 1 :=
e Tree 7y with finitely many bifurcations (corresponding to
singularities of X)
[Cusp: only one path to 0]

e + additional side branches at each node v

[Cusp: 251 side branches if 2| depth(v)]
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Generalizing the idea: trees of complexity d > 0

Cusp ~» Tree of complexity 1 :=

e Tree 7y with finitely many bifurcations (corresponding to
singularities of X)
[Cusp: only one path to 0]
o + additional side branches at each node v
[Cusp: 252 side branches if 2| depth(v)]
e Side branches are of the form T(Z,) x 7,
where 7, is of complexity 0
[Cusp: 7, two paths separating at depth %depth(v) —1]

Trees of varieties over Zj, 15 / 16
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Generalizing the idea: trees of complexity d > 0

Cusp ~» Tree of complexity 1 :=

e Tree 7y with finitely many bifurcations (corresponding to
singularities of X)
[Cusp: only one path to 0]
o + additional side branches at each node v
[Cusp: 252 side branches if 2| depth(v)]
e Side branches are of the form T(Z,) x 7,
where 7, is of complexity 0
[Cusp: 7, two paths separating at depth %depth(v) —1]

e 7, is uniform in depth(v): lengths of segments are linear in
depth(v)

Trees of varieties over Zj, 15 / 16
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e General definition:
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e General definition:

o Define uniform families of trees of complexity d
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e General definition:

o Define uniform families of trees of complexity d

e Trees of complexity d + 1 are with finitely many bifurcations +
uniform side branches of complexity d
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e General definition:

o Define uniform families of trees of complexity d

e Trees of complexity d + 1 are with finitely many bifurcations +
uniform side branches of complexity d

For any definable X C 72, T(X) is of complexity dim X.
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e General definition:

o Define uniform families of trees of complexity d

e Trees of complexity d + 1 are with finitely many bifurcations +
uniform side branches of complexity d
For any definable X C 72, T(X) is of complexity dim X.

e (Trees of definable set are not really more complicated than
trees of varieties.)
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e General definition:

o Define uniform families of trees of complexity d

e Trees of complexity d + 1 are with finitely many bifurcations +
uniform side branches of complexity d
For any definable X C 72, T(X) is of complexity dim X.

e (Trees of definable set are not really more complicated than
trees of varieties.)
Idea of proof:
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e General definition:

o Define uniform families of trees of complexity d

e Trees of complexity d + 1 are with finitely many bifurcations +
uniform side branches of complexity d
For any definable X C 72, T(X) is of complexity dim X.

e (Trees of definable set are not really more complicated than
trees of varieties.)
Idea of proof:

e For varities: similar to cusp (use theorem of Puiseux)
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Definition of trees of complexity d

e General definition:

o Define uniform families of trees of complexity d
o Trees of complexity d + 1 are with finitely many bifurcations +
uniform side branches of complexity d

Theorem (H.)
For any definable X C 72, T(X) is of complexity dim X.
e (Trees of definable set are not really more complicated than
trees of varieties.)

Idea of proof:
e For varities: similar to cusp (use theorem of Puiseux)

e For definable sets: additionally use cell decomposition
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