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Abstract. These are the notes of a talk given at the ICMS workshop Motivic

Integration and its Interactions with Model Theory and Non-Archimedean Ge-

ometry in May 2008. We explain the main conjecture of the article Trees of

definable sets over the p-adics by the author.
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1. Introduction

The metric on the p-adic integers Zp induces a metric on subsets of Zn
p . Suppose

we have two such subsets X and X ′ and we would like to know whether there
exists an isometry between them. This would be easiest if we had some invariants
such that an isometry exists if and only the invariants are equal. A first step in
this direction is the following: to each set X ⊂ Zn

p one can associate a tree T(X)
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such that if X, X ′ ⊂ Zn
p are p-adically closed, then isometries X → X ′ correspond

exactly to isomorphisms of trees T(X) ∼−→ T(X ′).
Checking whether two arbitrary trees are isomorphic is not much easier than

checking whether two sets are in isometry, so now it would be helpful if we had an
explicit description of the class of trees which we can obtain from subsets of Zn

p .
For arbitrary subsets X ⊂ Zn

p , the trees may be almost arbitrary, too, but now let
us restrict ourselves to sets X which are algebraic. In that case, it turns out that
the possible trees are very particular ones. The goal of these notes is to present
the main conjecture from [3], which gives a precise description of the class of these
trees. This class will be sufficiently small and explicit so that checking whether two
of its trees are isomorphic should not be a difficult problem anymore.

These notes are organized as follows. First we will introduce the trees (Sub-
section 1.1), present some variants of the conjecture (Section 2) and give another
motivation to consider the trees, namely the Poincaré series (Section 3). The biggest
part of the notes will then be the definition of the class of trees which are supposed
to appear. The complete definition is rather technical, so we will start by con-
sidering only the “easier half” of it (Section 4) and verify it on some examples
(Section 5); in particular, we will prove the conjecture for smooth algebraic sets.
Finally, we will describe the second half of the definition (Section 6) and see how
this helps understanding the Poincaré series (Section 7).

1.1. Associating trees to subsets of Zn
p . Let me first fix some notation.

Notation 1.1. • Fix once and for all a prime p.
• Qp is the field of p-adic numbers and Zp are the p-adic integers. We write

v : Qp → Z∪{∞} for the valuation. It will be useful to define the valuation
of a tuple as the minimum of the valuations of the coordinates: for a =
(a1, . . . , an) ∈ Qn

p , set v(a) := mini ai.

• As usual, the metric on Qp is the one induced by the norm |a| = p−v(a).
The most natural metric on Qn

p is obtained from the maximum norm |a| =
maxi |ai| = p−v(a). (This explains what we mean by “isometry”; apart from
that, in these notes we will prefer to use the valuation instead of the norm.)
• The set of balls in Qn

p will play a crucial role. If a ∈ Qn
p and λ ∈ Z, we

write B(a, λ) = a + pλZn
p = {x ∈ Qn

p | v(x − a) ≥ λ} for the ball around a
of “valuative radius” λ. (By radius, we will always mean valuative radius.)

The set of balls contained in Zn
p forms a tree under inclusion: each ball of radius

λ consists of exactly pn balls of radius λ + 1; the root of this tree is the ball Zn
p

itself. Another way to describe this tree is the following: a ball of radius λ contains
all elements of Zn

p where the last λ p-adic digits of each coordinate have been fixed;
going up one step in the tree means fixing one more digit; each path to infinity
corresponds to one element of Zn

p .
We now define the tree associated to a subset of Zn

p :

Definition 1.2. Suppose X ⊂ Zn
p . Then the tree of X

T(X) := {B = B(a, λ) | B ∩X 6= ∅} = {B(a, λ) | a ∈ X, λ ≥ 0}
is the tree consisting of all balls intersecting X , where the tree structure is given
by inclusion of balls. For any B0 ∈ T(X), the tree of X on B0

TB0
(X) := {B ∈ T(X) | B ⊂ B0}
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Figure 1. A three-point set X = {a1, a2, a3} in Z3, its tree, and
some partial trees. Each node in the tree of X corresponds to
fixing some digits of the numbers ai.

is the sub-tree of T(X) consisting of B0 and everything above.

The tree TB0
(X) is the same as T(X ∩ B0), except that the latter one has an

additional path from Zn
p to B0 (see Figure 1).

Example. • As we already noted, the full tree T(Zn
p ) is the one where each

node has exactly pn children.
• If B = B(a, λ) ⊂ Zn

p is a ball, then the tree T(B) consists of a path of
length λ (from the root to the ball B itself), with a tree isomorphic to
T(Zn

p ) attached to its end. (By “a tree T is attached to a node v of another
tree”, we mean that the root of T is identified with v.)
• If X = {a1, . . . , al} consists of l points, then T(X) consists of l infinite

paths, each one corresponding to one of the points of X . The paths can
have a common segment at the beginning; the heights at which two paths
separate is equal to v(ai − aj).

More generally, one easily verifies:

Proposition 1.3. There is a natural bijection between the infinite paths of T(X)
and the points of the closure X̄ of X (in p-adic topology). In particular, T(X) =
T(X̄).

This means that to get all trees T(X), it suffices to consider p-adically closed
sets X . In the remainder of the notes, we will restrict our attention to closed sets.

Here is a first property which trees of sets obviously satisfy:

Proposition 1.4. For any X ⊂ Zn
p , the tree T(X) has no leaves, i.e. no nodes

without children.

Let us now verify that isometries of sets correspond to isomorphisms of trees.
Recall that a map f : X → X ′ is an isometry if and only if it satisfies v(f(x1) −
f(x2)) = v(x1 − x2) for any x1, x2 ∈ X .

Proposition 1.5. For any two p-adically closed sets X ⊂ Zn
p and X ′ ⊂ Zn′

p , we
have a natural bijection

{isometries X −→ X ′} 1:1←→ {isomorphisms T(X) ∼−→ T(X ′)}.
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Figure 2. Not the tree of any algebraic set.

Sketch of proof. Suppose f : X → X ′ is an isometry. Then for x ∈ X define
ftree : B(x, λ) 7→ B(f(x), λ). The isometry condition implies that this yields a
well-defined map T(X)→ T(X ′). Use f−1 to find an inverse of ftree.

On the other hand, a map T(X) → T(X ′) defines a map on the set of infinite
paths, and these correspond to the points of X and X ′, respectively. �

2. The goal

Our goal is to understand how the tree of an algebraic set X can look like. More
precisely:

Question 2.1. For which abstract trees T does there exist an algebraic set X such
that T ∼= T(V (Zp))?

Just to see that this is not a trivial question (i.e. that there are indeed trees which
do not come from algebraic sets), consider the tree of Figure 2: the corresponding
set would have infinitely many isolated points, which is impossible.

Instead of considering only algebraic subsets of Zn
p , we might generalize the

question to some other sets. Let me present two such generalizations.

2.1. Algebraic generalization. Algebraic sets X ⊂ Zn
p can be written as X =

V (Zp), where V ⊂ An is an affine embedded variety defined over Zp (not necessarily
irreducible). Using this, we can define T(X) in a more algebraic way. For λ ∈ N,
consider the following canonical maps:

V (Zp) V (Zp/pλ+1Zp)

V (Zp/pλZp)
πλ

σλ

If V is the set of zeros of some polynomials fi, then

V (Zp/pλZp) = {B(x, λ) | x ∈ Zn
p , fi(x) ≡ 0 mod pλ}.

The image of the map πλ inside this consists of those balls which do contain a point
x satisfying fi(x) = 0, i.e. it is exactly the set of nodes of T(V (Zp)) at height λ.

Thus the set of nodes of T(V (Zp)) can be defined as ˙⋃∞
λ=0 V (Zp/pλZp). The tree

structure on this is given by the maps σλ: they map each small ball into the bigger
ball which contains the small one.

This new definition of T(V (Zp)) has the advantage that it does not depend on
the embedding of V into An and that it works for non-affine V . So here is an
algebraic generalization of the question:

Question 2.2. For which abstract trees T does there exist a variety V over Zp

such that T ∼= T(V (Zp))?
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(Here, “variety” can also be replaced by “scheme of finite type”.)
It turns out that essentially no new trees appear for non-affine varieties; this is

due to the fact that whether a tree comes from an algebraic set is essentially a local
question.

From the algebraic point of view, we might also consider another tree: the one
whose set of nodes of height λ is the whole set V (Zp/pλZp), instead of only the
image of the map πλ. These trees are quite similar in nature to the other ones;
however, for these notes let us stick to the first ones.

2.2. Model-theoretic generalization. From a model theoretic point of view, it is
also natural to replace algebraic subsets of Zn

p by definable ones (say, using the two-
sorted language consisting of the field Qp with the ring language, the value group
Z with the ordered group language, and the valuation map v). These definable
sets are well understood; in particular, we have the following quantifier elimination
result, which may also serve as definition of definable sets for those readers who are
not so familiar with model theory.

Proposition 2.3 (see [2], [4]). The definable sets are exactly the semi-algebraic
ones, i.e. boolean combinations of sets of the following types:

• algebraic sets (zero-sets of polynomials);
• for each polynomial f ∈ Qp[X1, . . . , Xn] and each r ∈ N, the inverse image

under f of the set of r-th powers: {x ∈ Qn
p | f(x) is an r-th power in Qp}.

(The “classical” definition of semi-algebraic sets over the reals is: boolean com-
binations of polynomial inequalities. In R, being a square is equivalent to being
non-negative, so there our definition of semi-algebraic yields the usual notion. The
reason to generalize it to Qp in the above way is that this yields precisely the
smallest class of sets which contains the algebraic sets and is closed under boolean
combinations and projections.)

So here is a model-theoretic version of our question:

Question 2.4. For which abstract trees T does there exist a definable set X such
that T ∼= T(X)?

2.3. The conjecture. To state the main conjecture, we need a notion of dimension
for the subsets of Zn

p we are considering. For algebraic subsets, such a notion of
course exists, but we have to be a little bit careful: an affine variety V ⊂ An might
have components which have no points over Qp (e.g. when V is given by X2 = a
and a has no root in Qp). The following definition yields the correct dimension;
moreover, even for definable subsets of Zn

p we get a good notion of dimension (see
[5]).

Definition 2.5. For X ⊂ Qn
p definable, dimX is defined as the dimension of the

Zariski closure of X in Q̃n
p (which is an algebraic set), where Q̃p is the algebraic

closure of Qp.

An equivalent definition would be: dimX is the maximal integer d such that
there exists a coordinate projection π onto d coordinates such that the image π(X)
contains an open ball.

Most of the work of these notes will be to define a class of (abstract) trees called
trees of level d. The main conjecture is then:
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Conjecture 2.6. A tree T is of level d if and only if there exists a definable set
X ⊂ Zn

p (for some suitable n) such that T(X) ∼= T .

The class of level d trees will be surprisingly small. For this reason, the diffi-
cult direction of the conjecture is “⇐”. Indeed, “⇒” can be proven by explicitly
constructing, for any given tree T of level d, a corresponding definable set X .

The conjecture does not say when we can choose X to be algebraic. However,
we will see on an example that trees of algebraic sets are not essentially simpler
than trees of definable sets.

Concerning “⇐”, we will see a proof when X is smooth (in a weak sense) in
Subsection 5.2. Other cases in which I can prove the conjecture (see [3]) are the
following: when X is one-dimensional (in that case, the theorem of Puiseux gives a
sufficiently explicit description of X), and when X is an arbitrary definable subset
of Z2

p (use cell decomposition and apply the theorem of Puiseux to the cell centers).

3. Trees and Poincaré series

Before coming to the definition of level d trees, let me mention one possible
application of the conjecture, which was also one of the motivations to study the
trees.

The Poincaré series of a set X ⊂ Zn
p is defined as follows:

PX(Z) :=

∞
∑

λ=0

NλZλ ∈ Z[[Z]],

where Nλ is the number of balls of radius λ intersecting X ; in terms of trees, Nλ is
the number of nodes of T(X) at height λ.

If X is a definable set, then this series is known to be a rational function in Z
(see [1]). This is of course a strong condition on T(X), and somehow it should be
reflected in the structure of T(X). Indeed, the definition of level d trees will be
restrictive enough so that the rationality of the Poincaré series is easily implied; we
will see this in the end of the notes. As the trees allow to compute the Poincaré
series rather explicitly, one can hope that the trees will help understanding it.

4. Definition of trees of level d: part I

The definition of trees of level d is inductive, so let us start defining trees of level
d = 0.

4.1. Trees of level 0.

Definition 4.1. T is of level 0 iff it has no leaves and only finitely many bifurca-
tions; in other words, it is the union of finitely many infinite paths, possibly having
some segments in common at the beginning.

The 0-dimensional definable sets are exactly the finite ones. As we already saw,
finite sets have trees satisfying this definition. Conversely, for any tree T of level 0 it
is easy to construct a finite set whose points have distances given by the bifurcation
heights of T .
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T1 T2 T1 × T2

Figure 3. Two trees and their product.

P1 P2

λλ

Figure 4. Condition (S) on trees of level ≤ d: S0 consists of the
two paths P1,P2. Each triangle is a tree of the form T ′ × T(Zp),
where T ′ is of level ≤ d − 1. After cutting the paths Pi at any
height (say, at the dotted lines), the remaining tree satisfies ( ).

4.2. Trees of level d: preliminaries. For d > 0, instead of defining trees of level
exactly d, it will be easier to define the class of trees of level ≤ d. Then of course
we can define a tree to be of level exactly d if and only it is of level ≤ d but not of
level ≤ d− 1.

The following notation will be needed in the definition:

Notation 4.2. If T1 and T2 are two trees, we write T1 × T2 for the tree whose set
of nodes at height λ is the product of the corresponding sets of nodes of T1 and T2
(see Figure 3).

One easily checks: T(X1 ×X2) ∼= T(X1)× T(X2).
We will mainly need this notation in the form T ×T(Zp); in this case, the product

tree can be obtained from T using the following recursive construction: Start with
a root r. For each child vi of the root of T , add p children to r. At each of these,
attach a copy of Ti × T(Zp), where Ti is the sub-tree of T above v.

4.3. Trees of level ≤ d: the smoothness condition. The definition of trees
of level ≤ d can be divided into two conditions: a “smoothness condition” (S)
and a “uniformity condition when approaching singularities” (U). In principle, (U)
implies (S), so (S) is not really necessary. However, the complete statement of (U)
is long and technical, and (S) by itself gives already a good idea on how the trees
will look like. For this reason, we start by only considering (S).
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Definition 4.3. A tree T is of level ≤ d if there exists a finite set S0 of infinite
paths (the “singular paths”) in T such that the following two conditions holds:

(S) For any λ, consider the tree T̃ obtained from T in the following way: for
each path P ∈ S0, remove the node on P at height λ from T and everything
above it. We require T̃ to satisfy the following condition:
( ) T̃ consists of a finite tree F with trees T ′

i × T(Zp) attached to its
leaves, where each T ′

i is of level ≤ d− 1.
(U) For each path P ∈ S0, a uniformity condition on the side branches of T on

P .

Condition (S) may sound complicated, but it has an easy geometric interpreta-
tion. Suppose that T = T(X) is the tree of some p-adically closed set X . I claim
that (S) translates into the following condition on X :

(S’) There exists a finite set S0 ⊂ X such that the following holds: around each
x ∈ X \ S0, there exists a neighbourhood B = B(x, λ) such that X ∩ B
is isometric to a set of the form X ′ × pλZp, where X ′ has a tree of level
≤ d− 1.

Proof of the claim. Let S0 be the set of points of X corresponding to the paths S0.
Suppose first that the sets S0 and S0 are empty. Then the balls from (S’) cover

the whole set X . As X a closed subset of Zn
p , it is compact, so finitely many balls

suffice to cover X . Moreover, any two balls are either disjoint or contained in one
another, so by keeping only the largest balls of our cover, we may suppose that they
are all disjoint. In terms of trees, the balls Bi of the cover form a “cross section”
through the tree T(X): they are precisely the leaves of a finite sub-tree F ⊂ T(X),
and T(X) is obtained from F by attaching TBi

(X) to the leaf Bi (for each i).
The condition that X ∩ Bi is isometric to a set of the form X ′ × pλZp (where

λ is the radius of Bi) translates to: T(X ∩ Bi) ∼= T ′
i × T(pλZp) for some tree T ′

i

of level ≤ d − 1. After removing the path of length λ at the lower end of the tree
T(X ∩ Bi), our condition becomes: TBi

(X) ∼= T ′
i × T(Zp), where T ′

i is a tree of
level ≤ d− 1. (Here, we use that removing the path of length λ at the beginning of
T ′

i does not change whether it is of level ≤ d−1.) This and the previous paragraph
together yield exactly condition ( ).

If we permit a non-empty singular set S0 in condition (S’), then we have to take
into account that X \ S0 is not compact anymore. However, for any radius λ, the

set X̃ := X \⋃

x∈S0
B(x, λ) obtained from X by removing balls of radius λ around

each point of S0 is again compact, so we may apply the above arguments to X̃.
The tree of X̃ is exactly the tree T̃ appearing in Condition (S), so again we get
that (S) and (S’) are equivalent. �

5. Examples

Before getting to the missing part of the definition of level ≤ d trees, let us
consider a few examples. In particular, we will prove the conjecture for smooth
algebraic sets; in that case, the set S0 can be chosen to be empty and condition
(U) becomes trivial.

5.1. The full set Zn
p . The tree of Zp can be written as T({0})×T(Zp). As T({0})

is of level 0, T(Zp) is of level ≤ 1. Inductively, one gets that T(Zn
p ) is of level ≤ n.
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x1 x2

x2 − x1

φ(x2)− φ(x1)

Figure 5. A not-too-steep curve: the vertical distance is domi-
nated by the horizontal one, so p-adically the diagonal distance is
equal to the horizontal one; hence the graph is isometric to the
horizontal line.

To see that T(Zn
p ) is exactly of level n, we use induction. It is clear that for n > 0,

T(Zn
p ) is not of level 0. Now suppose that T(Zn

p ) is of level m with n > m ≥ 1 and
consider condition (S). As there are only finitely many singular paths, somewhere
in the tree T(Zn

p ) there has to be a sub-tree of the form T ′ × T(Zp), where T ′ is
of level m − 1. Now every sub-tree of T(Zn

p ) is isomorphic to T(Zn
p ) itself, so we

get T ′ × T(Zp) ∼= T(Zn
p ), which implies T ′ ∼= T(Zn−1

p ); however, T(Zn−1
p ) is not of

level ≤ m− 1 by induction.
With a bit of additional work, this can be turned into a general argument that

if T(X) can not be a tree of level d if d < dimX .

5.2. Smooth algebraic sets. For simplicity, let us consider a smooth plane curve
X ; we would like to verify that it satisfies the geometric condition (S’), i.e. we have
to show that X is piecewise isometric to straight lines almost everywhere. It may
sound surprising that this is possible: over the reals, a curved line is never isometric
to a straight one. In the p-adics however, this is perfectly possible. Suppose first
that X = {(x, φ(x)) | x ∈ Zp} is the graph of a “not-too-steep function”, i.e. a
function φ satisfying

(*) v(φ(x1)− φ(x2)) ≥ v(x1 − x2)

for any x1, x2 ∈ Zp. Then one easily verifies that the map

Zp → X, x 7→ (x, φ(x))

is an isometry (see Figure 5). By Proposition 1.5, we get T(X) ∼= T(Zp), so in
particular it is of level 1.

Now if X is an arbitrary smooth curve, then by using a p-adic version of the
implicit function theorem and choosing coordinates adequately, we can write it
piecewise as graphs of not-too-steep functions. Thus it is of level 1. The same idea
also works for higher-dimensional smooth algebraic sets.

If X is an algebraic set which has only isolated singularities, then we let S0

be the set of these singularities; in this way, we obtain that X satisfies condition
(S’). However, the real difficulty in proving that X has a tree of level dimX lies in
verifying the uniformity condition (U) at each singularity.

A remark for algebraic geometers: If we write X = V (Zp), where V is a scheme
of finite type over Zp, then we did not use smoothness of V in the (strong) scheme
theoretic sense; in that language, what we need is only: for any Zp-valued point
x : spec Zp → V , V is smooth at x(η), where η is the generic point of spec Zp.
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Z7 7Z7

72Z7

7Z7 + 1

7Z7 + 27Z7 + 3

7Z7 + 4

7Z7 + 5 7Z7 + 6

P

Figure 6. The set of squares in Z7 (grey area) and its tree. Each
thick line in the diagram stands for a copy of the tree T(Zp).

5.3. The set of squares. Now let us consider a concrete example of a tree with
a singular path. Let X = {x2 | x ∈ Zp} be the set of squares. (Recall that this is
semi-algebraic.) For simplicity, suppose p 6= 2. An element of Qp is a square if and
only if it has even valuation and its angular component is a square in the residue
field Fp. (If x has odd valuation, then a root of x would have non-integer valuation.
If x has valuation 2µ, then write it as x = (pµ)2x0, where v(x0) = 0. By Hensels
Lemma, x0 is a square if and only if its residue is a square.)

In other words, X is a disjoint union of balls B(p2µa, 2µ + 1), where µ runs
through N and a runs through a set A of representatives of the non-zero squares
in the residue field. As the multiplicative group of Fp is cyclic, exactly half of its

elements are squares, so |A| = p−1
2 . Thus the tree of X is obtained in the following

way (see Figure 6):

• Start with an infinite path P going to 0.
• At each node of P of even height λ, add p−1

2 additional children (the balls

B(pλa, λ + 1) for a ∈ A).
• Attach a copy of T(Zp) to each of these additional children.

This tree does satisfy condition (S) if we set S0 := {P}. Moreover, we see that
the side branches of T at P are indeed very uniform: after fixing the height modulo
2, they are all the same. In the next example, we will see that the general situation
is a bit more complicated. Moreover, we will see that complicated trees can already
arise from algebraic sets, and not only from semi-algebraic ones.

5.4. The cusp curve. Consider the cusp curve X = {(x, y) ∈ Z2
p | x3 = y2};

again suppose p 6= 2. The condition x3 = y2 is equivalent to: x has a root and
y = ±x

√
x. Let X0 be the set of squares from the previous example and consider

one ball B0 = B(p2µa, 2µ + 1) of this set (again for µ ∈ N and a ∈ A, where
A is our set of representatives of the non-zero residue squares). The picture of
the cusp curve over R suggests that if B0 is close to 0, then above B0, X should
consist of two almost straight and almost parallel lines which are close together.
Indeed, even when B0 is not close to 0, over the p-adics one can show (see below)
that X ∩ (B0 × Zp) is isometric to B0 × {±p3µa

√
a}, i.e. two horizontal lines at

(valuative) distance v
(

p3µa
√

a− (−p3µa
√

a)
)

= 3µ.

If µ = 0, then these two lines lie in two different balls B((a, a
√

a), 1) and
B((a,−a

√
a), 1); the sub-tree of X above such a ball is isomorphic to T(Zp).
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λ

3
2λ

Figure 7. The cusp curve, a suggestive closeup, and its tree in
Z5. The thick sub-trees in the diagram are the trees denoted by
Tλ in the text; as part of the tree of the cusp curve, they stand for
Tλ × T(Zp).

If µ > 0, then both lines are contained in the same ball B = B((p2µa, 0), 2µ+1);
we get TB(X) ∼= T(Zp)×Tλ, where Tλ is the tree consisting of two paths separating
at height 3µ− (2µ + 1) = µ− 1.

In other words, T(X) can be obtained as follows (see Figure 7):

• Start with an infinite path P going to 0. For each even λ, attach the
following side branch Bλ to the node at height λ:
• If λ = 0, then Bλ consists of a root with p−1 children, above each of which

the tree is isomorphic to T(Zp).

• If λ > 0, then Bλ consists of a root with p−1
2 children, above each of which

the tree is isomorphic to Tλ×T(Zp), where Tλ is the tree consisting of two

paths separating at height λ
2 − 1.

To see that X ∩ (B0 × Zp) is isometric to two lines, we have to partition the
square roots {±√x | x ∈ B0} into two well-defined branches. For x, x′ ∈ B0,
we have x

x′
∈ 1 + pZp, so by Hensels Lemma, x

x′
has exactly one root contained

in 1 + pZp. We define that the roots
√

x and
√

x′ lie on the same branch iff√
x√
x′
∈ 1 + pZp. One easily checks that this is an equivalence relation where each

equivalence class contains exactly one root of each x ∈ B0.
Now these two branches of the root function yield two branches of X ∩ (B0 ×

Zp), and it is an easy computation to check that each branch is the graph of a
not-too-steep function. Together with the fact that they have constant distance
v(x
√

x− (−x
√

x)) = 3µ on B0, one gets the desired isometry.

6. Definition of trees of level d: part II

I will now state the missing uniformity condition (U) in the definition of trees of
level ≤ d. The cusp example gives a good idea of what it should be: for λ ≥ 2 and
even, each side branch Bλ consists of the same finite tree, with copies of Tλ×T(Zp)
attached to it, where Tλ are trees of level 0 which are, in a certain sense, uniform
in λ. This is roughly what will also happen in general. In particular, to state
condition (U) we will need a notion of uniform families of trees of level ≤ d; this
means that we have to completely rewrite the definition.
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P

B1

B4

T1,1 × T(Zp)

T1,2 × T(Zp)

T4,1 × T(Zp)

T4,2 × T(Zp)

B0

B3

B6

T0 × T(Zp)

T3 × T(Zp)

T6 × T(Zp)

Figure 8. A tree which will satisfy condition (U): to the (sin-
gle) singular path P , two families of side branches have been at-
tached: (B3µ)µ∈N and (B3µ+1)µ∈N. Each of the three families
(T3µ)µ, (T3µ+1,1)µ and (T3µ+1,2)µ is supposed to be a uniform fam-
ily of trees of level ≤ d− 1.

When defining trees of level ≤ d, we will need uniform families of trees of level
≤ d − 1 which are parametrized by subsets of N. To define those families, we
then need families of trees of level ≤ d − 2 parametrized by subsets of N2, etc.
Therefore, we will consider, right from the beginning, families parametrized by
subsets M ⊂ Nm for any m ∈ N. (For model theorists: M will be definable in the
value group.)

6.1. Uniform families of side branches. Before I give the definition of uniform
families of trees of level ≤ d, let me define how this then yields uniform families of
side branches; these side branches will then be attached to the singular paths (see
Figure 8).

Definition 6.1. Suppose M ⊂ Nm. A family of trees (Bκ)κ∈M is a uniform family
of side branches (of level ≤ d) if the following holds:

• Each tree Bκ satisfies ( ), i.e. it consists of a finite tree Fκ with trees
T ′

κ,i × T(Zp) attached to its leaves.
• The finite trees Fκ are all equal.
• For each i, the trees (T ′

κ,i)κ form a uniform family of trees of level ≤ d− 1.

Note that the side branches of the cusp example do satisfy this definition (for
λ ≥ 2 and even), assuming that the trees Tλ appearing there form a uniform family
of level 0 trees.

6.2. Uniform families of level 0. Now we define uniform families of trees of level
d = 0. Recall that a tree is of level 0 if it has finitely many bifurcations and no
leaves. In the uniform version, we require that the trees of the family differ only in
the lengths of the segments between the bifurcations, and moreover these lengths
are linear in the parameter κ. In other words:

Definition 6.2. A family of trees (Tκ)κ∈M is uniformly of level 0 if a single con-
struction of the following type yields all trees Tκ of the family:
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f1

g0

g0

g0
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g1

g1

g1

g1

g1g1

h0h0

h0

h0

h0

h0

h1h1

h1

Figure 9. A uniform family of level 0 trees Tλ consisting of three
joints a, b, c (the fat points), a bone d of length λ + 2, a bone g of
length 2λ + 1, and three infinite bones e, f, h. If we choose ρ = 2
in the definition of level ≤ d trees, then each label (including the
indices) corresponds to one uniform family of side branches.

• Start with a finite set of (not yet connected) nodes called “joints”; one of
the joints will be the root of Tκ.
• Attach some infinite paths to some of the joints.
• Add some connections of finite length between pairs of joints; these lengths

are allowed to depend linearly on κ.

We require the result to be a tree without leaves.

Each of the infinite paths and each of the finite connections from the construction
will be called a “bone”.

The family of trees Tλ from the cusp example fits into this definition (for λ ≥ 2
and even): start with one joint for the root and one for the (single) bifurcation,
add a connection of length 1

2λ− 1 between them, and add two infinite paths to the
bifurcation joint. This example shows that although the length of a connection is
an integer, as a function in κ it may have coefficients in Q, as the tree Tκ needs not
to be defined for all κ ∈ Nm.

Figure 9 shows another uniform family of trees of level 0 (for the moment, ignore
the small indices at the node labels). There, joint c is useless; we could as well have
attached an infinite path directly to joint a. However, such useless joints will
become useful in the definition of families of trees of higher level.

6.3. Uniform families of level d. For the case d ≥ 1, first note that if a tree T
is of level ≤ d, then the union of all paths in S0 forms a tree of level 0; let us call
this union the skeleton of T . Adopting this point of view, we will define a uniform
family of trees of level ≤ d to consist of a uniform family of trees of level 0 with
additional side branches. The side branches will be grouped into families, and each
family will be required to satisfy Definition 6.1.

Now recall that the smoothness condition (S) required certain sub-trees T̃ to
satisfy ( ). As Definition 6.1 implies that each side branch satisfies ( ), the total
trees will automatically satisfy (S), so we may drop condition (S) from the final
definition of uniform families of level ≤ d trees.

Note that we now want to impose two kinds of uniformity on the side branches:
uniformity for different side branches in the same tree (after all, this was the initial
reason to introduce uniform families), and uniformity in κ.
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The uniformity inside a single tree will be required separately for each bone and
each joint of the skeleton. Moreover, recall that in the cusp example, we only had
uniformity separately for side branches at even heights and for side branches at odd
heights. In general, we will require uniformity separately depending on the height
of the side branch modulo some integer ρ. Here is the final and precise formulation
(see Figure 9).

Definition 6.3. A family (Tκ)κ∈M is a uniform family of trees of level ≤ d if there
exists

• a sub-tree Sκ of Tκ (the “skeleton”)
• a natural number ρ

such that the following holds:

• The skeletons (Sλ)λ∈M form a uniform family of level 0 trees.
• Fix a joint and denote, for each κ, the side branch of Tκ at that joint by
Bκ; the family (Bκ)κ∈M has to be a uniform family of side branches. This
has to hold for all joints.
• Fix a bone and denote by Nκ the set of heights at which that bone has

a node in Tκ (not counting the joint(s) at the end(s) of the bone). For
λ ∈ Nκ, denote by Bκ,λ the side branch of Tκ on the bone at height λ. Now
additionally fix a congruence class C = c + ρZ and define N := {(κ, λ) |
κ ∈M, λ ∈ Nκ ∩ C}. The family (Bκ,λ)(κ,λ)∈N has to be a uniform family
of side branches (for each bone and for each congruence class).

To get the definition of a single tree of level ≤ d, simply choose M to be a
one-element-set.

The congruence condition in the above definition might seem somewhat unnat-
ural: should we really consider the absolute height of the side branch, or would it
make more sense to consider the height relative to the lower end of the bone? (In
the example of Figure 9, bone e starts with a side branch of type e1 for even λ and
with a side branch of type e0 for odd λ.) Or what about the upper end of the bone,
for those bones which have finite length? The answer is: it doesn’t matter. More
precisely, it does change the notion of uniform families, but it does not change the
notion of (single) level ≤ d trees. We may even additionally require that in a family,
the length of each bone is constant modulo ρ (for all κ ∈M). In that case, all the
above variants become equivalent.

For simplicity, let us check this only for families indexed by a single parameter.
Suppose that we have a family (Tκ)κ∈M whose bone lengths are not constant modulo
ρ, and suppose that this family appears in the side branches of a tree T ′. The set
M is a subset of a congruence class c′ + ρ′Z, where ρ′ is the modulus appearing in
the definition of the outer tree T ′. By replacing ρ′ by a multiple of it, we may cut
our family (Tκ)κ∈M into several smaller families. As the bone lengths are linear in
κ, we can do this in such a way that all bone lengths become constant modulo ρ.

7. Back to the Poincaré series

To finish, I will sketch how rationality of the Poincaré series can be obtained for
trees T of level ≤ d. Recall that the series we are interested in is the following:

PT (Z) :=

∞
∑

λ=0

NλZλ ∈ Z[[Z]]
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A

B

C D

Figure 10. Partitioning the nodes of the tree of the cusp curve to
compute its Poincaré series (don’t forget that the thick lines stand
for: take the product of that tree with T(Zp)).

where Nλ is the number of nodes of T at height λ.
For any subset A of the nodes of T , we can define a similar series PA(Z): use

the same definition, but let Nλ count only nodes inside A. For any partition (Ai)i

of the nodes of T , we then get the total series PT (Z) as sum of the series PAi
(Z).

If the partition is finite, then it suffices to prove that all PAi
(Z) are rational to get

rationality of PT (Z).
Now the idea is that our definition of level d trees naturally yields a finite par-

tition of T into sets, each of which is easy to describe. Recall that T consists of a
skeleton with side branches and that the side branch come in finitely many fami-
lies. Start by partitioning the nodes of T according to the bones and joints of the
skeleton and according to the families of side branches. Each side branch family is
build out of a finite tree and finitely many families of trees of level ≤ d−1; use this
to further partition the nodes of T . Then do the same recursively for the families
of trees of level ≤ d − 1 appearing in the construction. The resulting partition of
T is still finite, as in one family, all trees together have only finitely many families
of side branches.

Each of the resulting sets will have a series which can be written as nested
geometric series (and such nested series are rational). Let me show this on an
example. Figure 10 shows the final partition one obtains for the cusp curve (slightly
simplified, in fact; by the general recipe, B and D would be cut into p−1 subsets and
C would be cut into p−1

2 subsets). The series of the sets A and B are just geometric

series: PA(Z) =
∑∞

λ=0 Zλ = 1
1−Z

and PB(Z) =
∑∞

λ=0(p−1)pλZλ+1 = (p−1)Z
1−pZ

. For

the sets C and D, we can write the series using an outer sum which runs over
the different side branches (summand µ corresponds to the side branch starting
at height 2µ) and an inner sum which runs over the different heights inside a side
branch. The series obtained in this way are are

PC(Z) =
p− 1

2

∞
∑

µ=1

µ−1
∑

ν=0

pνZ2µ+1+ν

and

PD(Z) = (p− 1)

∞
∑

µ=1

∞
∑

ν=µ

pνZ2µ+1+ν .
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Actually computing these series is left to the reader.
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